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1 Picard’s Great Theorem and Fatou’s Theorem

1.1 Picard’s Great Theorem

Theorem 1.1 (Picard’s great theorem). Let a € C, and let f € Hol({0 < |z—a| < ¢}) have
an essential singularity at a. There exists w € C be such that the range f({0 < |z—a| < r})
contains C\ {w} for all0 < r <4.

Proof. We may assume that ¢ = 0. Assume that there exists some € > 0 such that
f € Hol(0 < |2] <€) and f(0 < |2| < €) omits 2 distinct values a,b € C. Let f,(z) =
f(z/n) € Hol(0 < |z| < €), so a,b ¢ Ran(f,) for all n > 1. Apply the Montel-Caratheodory
theorem to (f,,) to get a subsequence ( fy,, ) such that either (f,,, ) converges locally uniformly
in Hol(0 < |z| < ¢€) or f, — oo locally uniformly.

Case 1: Assume that (f,,) converges locally uniformly in Hol(0 < |z| < €). Let
K = {z:|z| = ¢/2}. Then |f,, (z)] < C forall z € K, v = 1,2,.... In other words,
|f(2)] < C for |z| =¢/(2n,) — 0. By the maximum principle, f is bounded in a punctured
neighborhood of 0, so 0 is a removable singularity for f. This is a contradiction.

Case 2: Assume that f,, — oo locally uniformly. Let g,(z) = 1/(fn(2) — a). Then
gn, 1s a sequence of holomorphic functions with g,, — 0 locally uniformly. Arguing as in
Case 1, we get: g(z) = 1/(f(z) — a) has a removable singularity at 0 with g(0) = 0. So
f=a+1/g(z) has a pole at 0, which is impossible. O

1.2 Boundary values of harmonic functions in the disc

Theorem 1.2 (Fatou). Let u be harmonic in D and bounded. Then the radial limits
lim, ,1- u(rz) exist for a.e. z € 0D (with respect to 1-dimensional) Lebesgue measure on
the circle. If uw = f € Hol(D) and f(z) = lim,_,;- f(rz) vanishes on a set of positive
measure (on the circle), then f = 0.

Proof. We may assume that u is real-valued. When 0 < r < 1, let u, : L'(dD) — C be
the linear, continuous functional given by

w(h) =5 [ " () () dp.
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We have |u,(f)| < M| f|lz1- Then

H/’LTH(Ll)*: sup |,U’T(f)|

<M, 0<r<l.
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We can apply the Banach-Alaoglu theorem': let B be a separable Banach space, and
let (An) be a sequence of linear, continuous functionals B — C such that ||Ay||p+ < C for
all a. Then there exists a subsequence (A,;) such that for all u € B, (Ay,(u)) converges
in C. In our case, B = L', so there exists a sequence r, — 1 such that for every f € L',
lim,, 1 pir, (f) exists. Define p(f) as this limit. We have p : L' — C is linear, and
il zry- < M. Thus, p € (LY)*, the space of linear, continuous functionals on L. This
space is L>°(D); that is, there is a g € L*°(D) such that
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Now z +— u(rgz) is harmonic in a neighborhood of |z| < 1, so
u(rgz) = /P(z,ew)u(rkew) dy VE,|z| <1
Let k — oco. P(z,e'¥) € L'(0D), so

u(z) = [ Plee®)g(e) dy.
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In other words, u is harmonic and bounded iff u equals the Poisson integral of g for some
g € L. Next, we will show that lim,_,; u(rz) = g(z) for a.e. z. O

We will finish the proof next time.

'The idea of the proof is to let take a countable dense subset (u,) of B and use diagonalization to find
(Aq;) such that limj,0 Aa; (uy). Then extend to any u € B using [|[Aq| s~ < C.



	Picard's Great Theorem and Fatou's Theorem
	Picard's Great Theorem
	Boundary values of harmonic functions in the disc


